
Altreonic NV - Gemeentestraat 61A b1, B-3210 Linden, Belgium.
info.request@altreonic.com, www.altreonic.com, tel. +32 16 20 20 59

VirtuosoNextTM

A scalable and Network Centric RTOS for Embedded Applications,
enabling safe and secure small grain Space and Time Partitioning

VirtuosoNextTM breaks new grounds in the field of Real-Time
Operating Systems. It was from the ground up developed using formal
modeling, enabling safety critical and high reliability applications,
Conceptually it was developed as a scalable communication layer to
support heterogeneous multi-processor systems, but it runs equally well
on a single processor. It supports small microcontrollers, many-core chips
with little memory as well as widely distributed systems.
The Virtual Single Processor programming model provides transparent
parallel processing. An additional benefit of the unique architectural
approach is safety and scalability. VirtuosoNextTM provides the same
kernel services as most RTOS, such as starting and stopping tasks,
priority based preemptive scheduling supporting priority inheritance,
Events, Semaphores, FIFOs, Ports, Hubs, Resources, Memory Pools
but also BlackBoards, DataEvents and MemoryBlockQueues. With
VirtuosoNext, the user can also enable fine-grain space and time
partitioning. This provides hypervisor like protection but keeps the reactivity of a fast RTOS. Each
application task is fully protected in memory. Upon a fault, the CPU exception is trapped and the task is
restored in microseconds enabling real-time fault tolerance.

Entirely written in ANSI-C (MISRA checked) the full code size will vary between about 5 to 30 Kbytes,
whereas the code generation tools will remove any unused functionality. Services can be called in
blocking, non-blocking, blocking with time-out and asynchronous mode. The kernel itself as well as the
drivers are also tasks, increasing the modularity and reducing the critical sections.

From the RTOS point of view the kernel shuffles Packets around, while for the implementation the Hubs
play the dominant role. Packets are sent to a Hub where they synchronise with requests from other tasks.
If no request is available, the Packets are put in a priority ordered waiting queue. By design, such buffers
cannot overflow. VirtuosoNextTM has also unique support for distributed priority inheritance.

Simulation is very important, therefore Microsoft Windows and Linux are supported as virtual hardware
nodes. While this simulator provides for logically correct operations, it also allows integrating existing
host operating systems or existing RTOS with the nodes running VirtuosoNext. A simple serial
connection can be sufficient to establish communication. The Event Tracer allows the user to analyse
task scheduling and inter-node interaction.

VirtuosoNext has also integration
support via the version management
repository with the GoedelWorksTM
project development environment for
traceability. A Qualification package is
also available as a project developed
inside Altreonic’s GoedelWorks.

While already rich in semantic behaviour, more
elaborate and specialised services can be added using
the generic Hub, an implementation of Guarded
Actions complemented by callback functions.
VirtuosoNext transparently supports heterogeneous
target systems allowing to mix 8bit, 16bit, 32bit, 64bit
and DSP processors, FPGA co-processing blocks or
even host nodes running a traditional (RT)OS. The
only requirement is the availability of an ANSI-C
compiler. A POSIX conversion kit is available as well.
The code is statically linked with datastructures being
generated at build time reducing memory requirements
as well as increasing safety The developer specifies his
topology and application using Visual DesignerTM or
by editing the configuration files. Fine grain space and
time partitioning is enabled depending on the target
node. For the first time trustworthiness is combined
with small code size, performance and ease of use, also
for heterogeneous distributed applications.
VirtuosoNext is a concurrent programming paradigm
that was designed to be used. VirtuosoNext is not just
another RTOS. It reinvents the very concept. Available
under an Open Technology Licensing scheme.
Qualification Package available as a GoedelWorks
project.

Available
services

Hub Enity Semantics

Event Synchronisation on a boolean
event

DataEvent Event Synchronisation with data
transfer

Counting
Semaphore

Synchronisation on a positive
counter

FIFO queue Buffered communication

Resource Creates a logical critical section

Port Exchanging Packets

Packet pool Dynamic Packet allocation

Memory Block
pool

Dynamic memory allocation

MemoryBlock
Queue

Locally buffered communication
(SP only)

Single phase services

_W Tasks waits for synchronisation

_WT Tasks waits until
synchronisation or timeout

_NW Task returns immediately

Two phase services

_Async Task returns and synchronises
later (SP only)

Tools

Visual Designer A graphical Modeling and
application development
environment with target
metamodels and code generator

Event Tracer A visual and analysing display of
intra- and internode events

Open System
Inspector

A system level inspection tool
using peek/pook functionality

Host server
component

For easy use of host nodes and
their services

Board/Processor
Support Package

On request

Safe Virtual
Machine

Target independent execution of
binary code

Performance metrics (-Os compiled)

Protection Disabled Enabled

CPU ARM-
M3

PPC-
e600

ARM-
M3

ARM-
A9

Code Size*

Minimum 4496 9116 8024 15004

Max. (all
services)

8656 15724 11564 21844

Performance: semaphore loop (in clock cycles)
= 4 services + 4 context switches)

2745 3826 2945 10423

Interrupt latency (in clock cycles)
Measured as time interval between the HW interrupt and reading data

IRQ to ISR 46 550** 50 197***

IRQ to
Task

754 1990** 850 2465***

*Measured by building a minimum application, including the
compiler added runtime libraries (which is processor specific). No
MBQ for disabled mode.
**: measured at board level (Curtis Wright VME-183 Dual Freescale
7447A/7448 SBC). Includes external interrupt controller.
***: OMAP 4460

